

Thomas Hartung & team

Slides available

MPS

A.I.

Green Chemistry Advisory Panel

Pyrogen

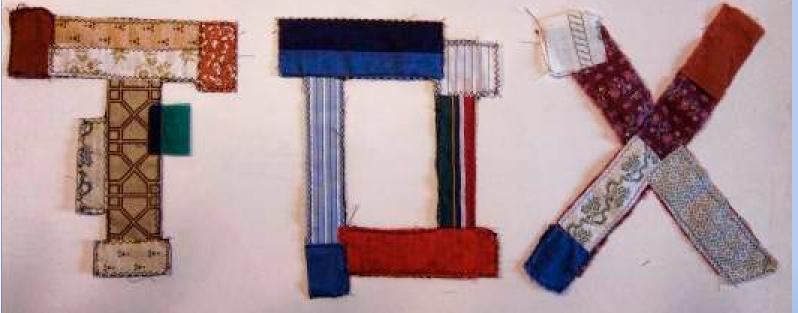
ATCC

TOXTRACK

Consultant, shareholder In preparation: Insilica LLC

Almost 16,000 active learners

Toxicology 21: Scientific Applications


Johns Hopkins University

8500+ enrolled learners

Massive Open Online Courses platform

- Every scandal gives one patch
- Many patches are 50-80 years old
- No way to remove a patch
- Every patch is of its own appearance and workmanship
- Throughput, costs, reproducibility
- Public opinion

The evolution of toxicology: patchwork

Food for Thought ...

The State of the Scientific Revolution in Toxicology

Thomas Hartung 1,2 and Aristides M. Tsatsakis 3

No revolution in quite a while

Reproducibility

Six most frequent toxicity tests

Consuming 57% of animals in tox

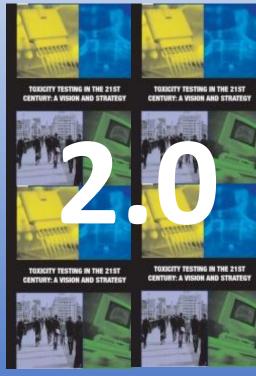
Mice and rat predict each other ~60% for systemic tox

350-750 chemicals with repeat tests (n = 2,839, up to ~100 repeats)

81% reproducible for toxic chemicals

Luechtefeld et al., ToxSci 2018

Watershed moment 2007 NRC report



Toxicity testing in the 21st century: progress in the past decade and future perspectives

Arch Toxicol 2019

D. Krewski $^{1,2,4} \cdot$ M. E. Andersen $^3 \cdot$ M. G. Tyshenko $^{2,4} \cdot$ K. Krishnan $^{2,5} \cdot$ T. Hartung $^{6,13} \cdot$ K. Boekelheide $^7 \cdot$ J. F. Wambaugh $^8 \cdot$ D. Jones $^9 \cdot$ M. Whelan $^{10} \cdot$ R. Thomas $^8 \cdot$ C. Yauk $^{11} \cdot$ T. Barton-Maclaren $^{11} \cdot$ I. Cote 12

VT-ARC

Call for a Human Exposome Project, in press

Future Directions Workshop: Advancing the Next Scientific Revolution in Toxicology

Office of the Under Secretary of Defense for Research and Engineering OUSD(R&E)

April 28-29, 2022

Arlington, VA

Co-Chairs

Ana Navas-Acien, Weihsueh A. Chiu & Thomas Hartung

What is emerging that can help us? Exposure science (high throughput and untargeted exposomics, remote sensing, citizen science ...)

Technologies (~omics, high-throughput, MPS, A.I.)

Evidence Integration (Evidence-based Tox, IATA, Green Tox Investigative Tox, Mechanistic Validation, Probabilistic Risk Assessment, Systems Toxicology, virtual experiments...)

Fenna Sillé

ALTEX 2020, 37, 3-23

"Progress is impossible without change, and those who cannot change their minds cannot change anything." George Bernard Shaw (1856-1950)

> "If you change the way you look at things, the things you look at change." Wayne Dyer (1940-2015)

Food for Thought ...

The Exposome – a New Approach for Risk Assessment

Fenna Sillé¹, Spyros Karakitsios², Andre Kleensang¹, Kirsten Koehler¹, Alexandra Maertens¹, Gary W. Miller³, Carsten Prasse¹, Lesliam Quiros-Alcala¹, Gurumurthy Ramachandran¹, Stephen M. Rappaport⁴, Ana M. Rule¹, Denis Sarigiannis^{2,5}, Lena Smirnova¹ and Thomas Hartung^{1,6}

Exposome & A.I.

= E.I.

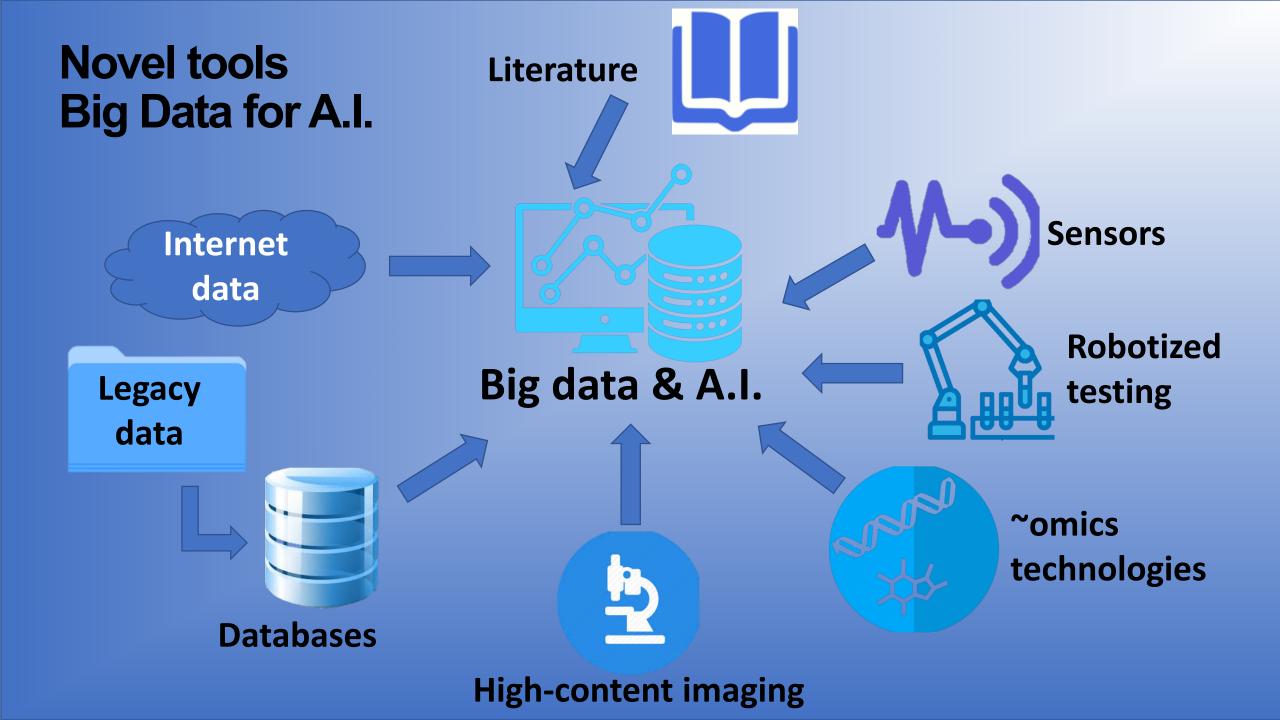
(Exposome Intelligence)

What is emerging that can help us? Exposure science (high throughput and untargeted exposomics, remote sensing, citizen science ...)

Technologies (~omics, high-throughput, MPS, A.I.)

Evidence Integration (Evidence-based Tox, IATA, Green Tox Investigative Tox, Mechanistic Validation, Probabilistic Risk Assessment, Systems Toxicology, virtual experiments...)

A.I. = Making big sense of


Power of computers doubles every 2 years

Power of AI doubles every 3 months

84% of all data produced last 6 years

Natural language processing

https://theamericangenius.com/editori als/big-data-is-watching-you-somewill-panic-others-will-rejoice/

Digital pathology

Many (pathologists) see toxicology as the pathology caused by chemicals

Image analysis
High-content imaging
Cloud storage
Standardized
interpretation

https://sfmagazine.com/technotes/february-2019-wipo-u-s-and-china-lead-the-world-in-ai-innovation/

ACCEPTED MANUSCRIPT

Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility

Thomas Luechtefeld, Dan Marsh, Craig Rowlands, Thomas Hartung

Toxicological Sciences, kfy152, https://doi.org/10.1093/toxsci/kfy152

Published: 11 July 2018

Tom Luechtefeld

9 most common toxicity tests

190,000 chemical's hazard cross-validation:

87% correct

Science, 12 Feb 2016

A crystal ball for chemical safety

By comparing new chemicals to known compounds, toxicologists seek early hazard warnings

Ongoing RASAR developments

79% (n=131) and 80% (n=375) accuracy in predicting HUMAN skin sensitization (Golden et al., ALTEX, 2020)

38,250 predictions for 4,729 food-relevant substances 83% accurate (n=139) (Fu et al., 2022)

Preliminary (Luechtefeld et al., in preparation):
Reproductive Tox 82% accurate (n=1152)
Carcinogenicity 75% accurate (n=950)
Androgen effect 98% accurate (n=8492)
Estrogen transactivation 80% accurate (n=1660)

EU ONTOX project (\$20 million, 2021-2026) to expand to liver, kidney and developing brain

Accepted for Australian Industrial Chemical Legislation 2020

https://www.dreamstime.com/photos-images/sky-limit.html

Green toxicology

the toxicology aspects of green chemistry

Green Chemistry Series

Green Toxicology

Making Chemicals Benign by Design

Alex Maertens

Another use of alternatives methods

TOXICOLOGICAL SCIENCES, 161(2), 2018, 285-289

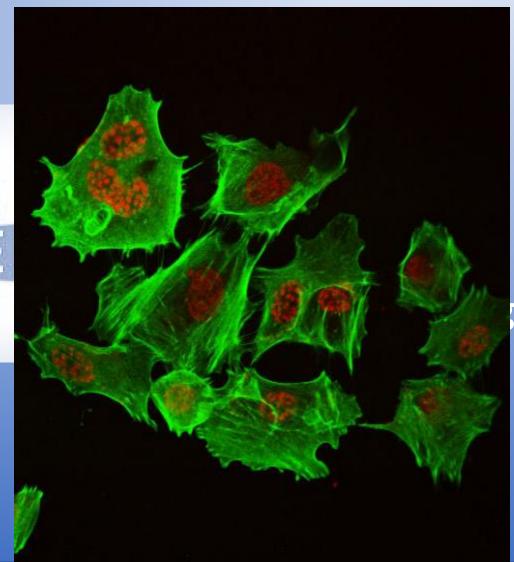
CI Vears doi: 10.1093/toxsci/kfx243 Advance Access Publication Date: December 18, 2017 Editorial

ly About and Avoid Toxic

Alexandra Maertens

ng*,†,1

Human cell and tissue culture


Irreprodu-cell-bility

Primary cells of limited access, quality, and quantity
Tumor cell lines

- 15-25% mycoplasma infected
- Genetic instability
- Culture artifacts

Evolution of Cell Culture high-tech & business opportunity

Marx et al., Biology-inspired micro-physiological system approaches to solve the prediction dilemma of substance testing using animals. ALTEX 2016, 33:272-321.

Marx et al., Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX 2020, 37:365-

394.

Human microphysiological systems for drug development

Organs-on-chips could be used to assess drug efficacy and support personalized medicine

2020

Current Opinion in Biotechnology

New Orleans 30 May-3 Jun '22 Hosts: Suzie Fitzpatrick, FDA Thomas Hartung, Hopkins Don Ingber, Harvard



https://mpsworldsummit.com

52 organizations
34 Scientific Advisory Board
665 Registered (215 Online, 65 FDA)
26 Countries
142 speakers, 189 posters

\$450k from NCATS
Forming the International MPS
Society and Conference Series

2nd MPS world Summit: June 26-30th 2023

Guidance Document on Good Cell and Tissue Culture Practice 2.0 (GCCP 2.0) ALTEX 2022, 39:30-70

David Pamies¹, Marcel Leist^{2,3}, Sandra Coecke⁴, Gerard Bowe⁴, Dave Allen⁵, Gerhard Gstraunthaler⁶, Anna Bal-Price⁴, Francesca Pistollato⁴, Rob deVries^{7,8}, Helena T. Hogberg⁹, Thomas Hartung^{2,9} and Glyn Stacey^{10,11,12}

- Quality of cell model (GCCP)
- Quality of reporting (GIVReSt)
- Quality of results (validation)

BRAIN ORGANOIDS

Lena Smirnova

HUMAN 3D DEVELOPMENT FROM IPSC

GLIA CELLS,
MYELINATION
+ADDED MICRO-GLIA

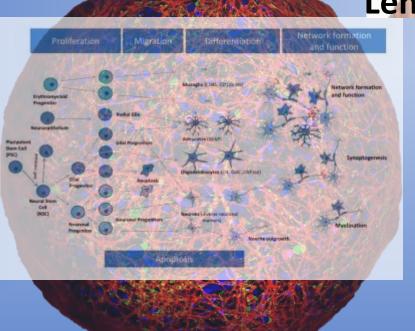
INFECTION
CANCER GRAFTS
TOXICITY
DNT
NEURODEGENERATION

GENETIC BACKGROUNDS,

- + RISK GENES, REPAIR
- + REPORTER GENES

GENE X ENVIRONMENT MIXTURES

FUNCTIONAL ASSAYS: NEURITES, SYNAPSES, 3D EEG



ORGANOID
INTELLIGENCE (O.I.)

6-in-1 BrainSphere assay to test Neurodevelopment

Myelination
Myelination
Neurite outgrowth
Synaptogenesis
Glia migration & Gliosis
Neural network (E-phys)

Bal-Price et al., 2018a

Lena Smirnova

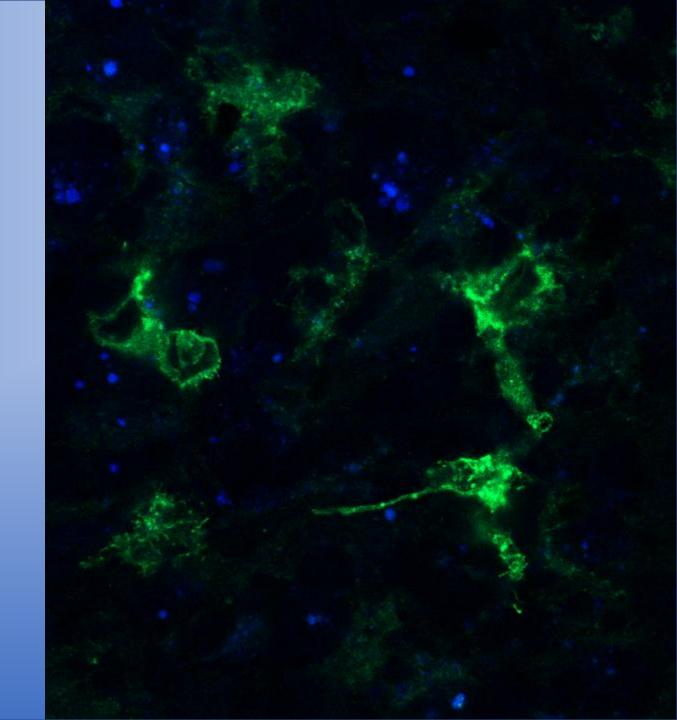
CRISPR/CAS9

Reporter/ Fusion proteins

Neurons
Astrocytes
Oligodendrocytes
Synapses

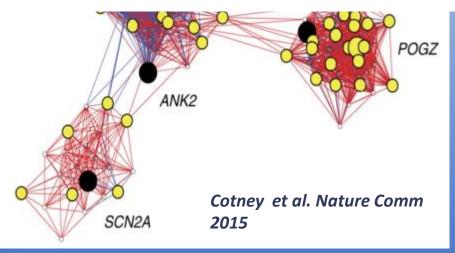
3D electrophys

High content imaging Toxicant/drug screening


CRISPR/Cas9 Knock-Ins

Oligodendrocytes (PLP-GFP)

Synapsis (Synaptophysin-BFP)



Published September 08, 2022

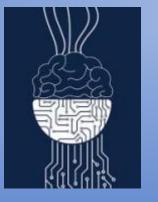
DISABILITY

Bloomberg School Researchers Awarded \$11.7 Million Five-Year NIH Grant to Build and Lead Autism Center of Excellence Network

Network will aggregate global research projects studying gene-environment interaction to understand autism's causes and to improve quality of life among autistic individuals

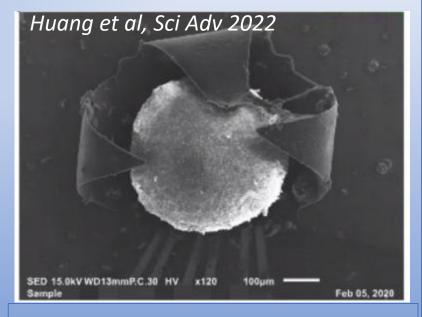
Functional and Molecular signatures

Lena Smirnova


Organoid Intelligence (O.I.)

Organoid

0.1.



Input

Output

A.I.

Human brain organoid caged in shell electrodes

Workshop 2022

Baltimore Declaration Toward OI

What is emerging that can help us? Exposure science (high throughput and untargeted exposomics, remote sensing, citizen science ...)

Technologies (~omics, high-throughput, MPS, A.I.)

Evidence Integration (Evidence-based Tox, IATA, Green Tox Investigative Tox, Mechanistic Validation, Probabilistic Risk Assessment, Systems Toxicology, virtual experiments...)

The challenge

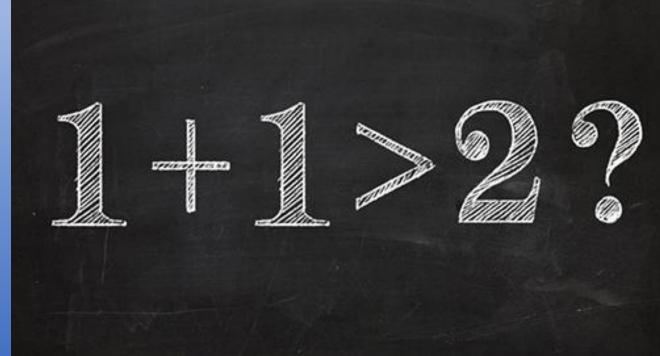
https://www.loopclosed.com.au/program_services/data_integration_and_analysis.html

Similar for

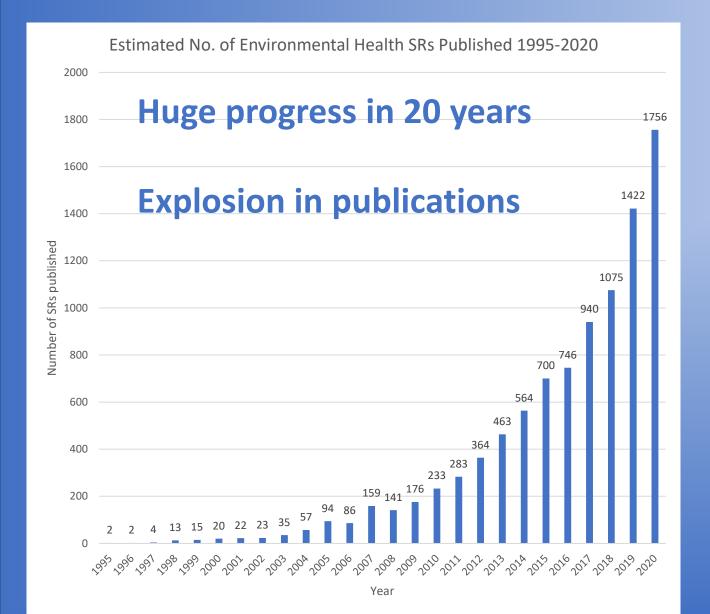
- Systematic reviews
- Risk assessments
- Integrated Testing Strategies

http://phd.dia.uniroma3.it/multi-source-data-integration-with-humans-in-the-loop/

In vivitrosi


Replacement of animal testing by integrated approaches to testing and assessment (IATA): a call for in vivitrosi

Francesca Caloni¹ · Isabella De Angelis² · Thomas Hartung^{3,4}

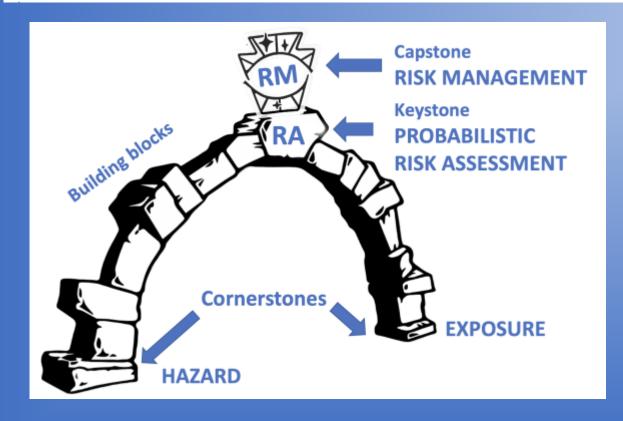

Arch Toxicol 2022

Aka Integrated
Testing Strategies,
IATA, Defined
Approaches...

The explosion of systematic reviews

Katya Tsaioun

- ~1000 people engaged with EBTC in 12 years
- Stakeholders at every level, everywhere
- EBT journal from 2023
- EBT association forming


ALTEX 2022

Food for Thought ...

Probabilistic Risk Assessment – the Keystone for the Future of Toxicology

Alexandra Maertens¹, Emily Golden¹, Thomas H. Luechtefeld^{1,2}, Sebastian Hoffmann^{1,3}, Katya Tsaioun¹ and Thomas Hartung^{1,4}

Chemicals Mixtures /products **Metabolites**

Mixture Tox

Humans **Animals Ecosystems**

Uses

Industries = legislations

X

Countries Regions

One Health **Cumulative Exposure**

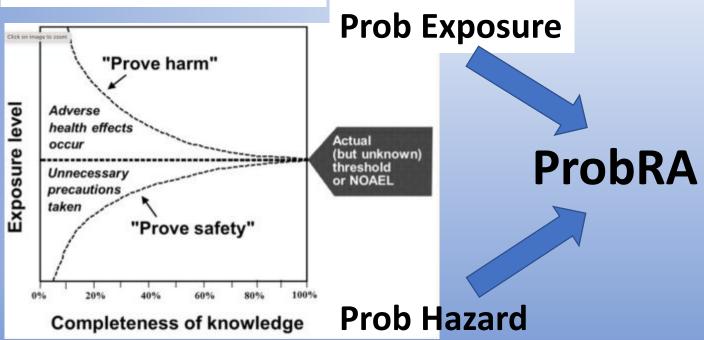
OSOA

Harmonization

Legacy

data

Tons of test needs **Tons of discrepancies** = Mission Impossible


Evidence generation

> MPS, AI, HTS

Evidence integration

Evid-based Tox Test strategies, Al

Exposomics, El Exposure science, HT exposure

The difficulty lies not in the new ideas, but in escaping from the old ones.

JM Keynes

Current Sponsors:

Slides available:

